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The analysis of the linear stability of a planar Chapman–Jouguet detonation wave is
reformulated for an arbitrary caloric (incomplete) equation of state in an attempt to
better represent the stability properties of detonations in condensed-phase explosives.
Calculations are performed on a ‘stiffened-gas’ equation of state which allows us
to prescribe a finite detonation Mach number while simultaneously allowing for a
detonation shock pressure that is substantially larger than the ambient pressure. We
show that the effect of increasing the ambient sound speed in the material, for a
given detonation speed, has a stabilizing effect on the detonation. We also show that
the presence of the slow reaction stage, a feature of detonations in certain types of
energetic materials, where the detonation structure is characterized by a fast reaction
stage behind the detonation shock followed by a slow reaction stage, tends to have a
destabilizing effect.

1. Introduction
A detonation is a form of propagating wave front, consisting of a lead shock

sustained by chemical reaction in a following reaction zone, which can occur in
gaseous, liquid or solid explosives. The idealized detonation structure in any explosive
is a one-dimensional wave front, the Zeldovich–Von Neumann–Döring, or ZND, wave
(Fickett & Davis 1979), which in most cases propagates at a minimum speed defined
by the presence of a sonic flow point (relative to the detonation wave speed) within
the reaction zone, known as the Chapman–Jouguet, or CJ, detonation. However,
in gases, this idealized structure is typically unstable, and detonation fronts tend to
propagate in a highly unsteady multi-dimensional manner, leading to the formation of
spectacular fish-scale patterns on the walls of rectangular shock tubes lined with soot-
covered aluminium foil (Fickett & Davis 1979). Several experimental investigations
(including schlieren and particle laser-induced fluorescence imaging, e.g. Lee 1984;
Kaneshige & Shepherd 1997; Austin, Pintgen & Shepherd 2004) and analysis via
direct numerical simulation (e.g. Sharpe 2001; Gamezo et al. 2000), have led to a
reasonable understanding of the Mach stem, and reflected and lead shock triple-point
interactions that underlie the cellular detonation structure in gases.

On the other hand, comparatively little is known about the reaction wave structure
in detonating liquid and solid explosives, where the extreme high-pressure environment
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( ∼30–50 GPa) and high wave speeds ( ∼6–8 km s−1) make experimental diagnostic
data collection and imaging difficult. While there is some evidence that detonations
in some forms of liquid explosives (such as nitromethane) do exhibit a transverse-
wave structure (Fickett & Davis 1979; Engelke & Bdzil 1983), it has not yet been
established in all cases whether this is due to an inherent reactive-hydrodynamic
instability (as in gases) or due to the effects of explosive confinement (Fickett &
Davis 1979). On the other hand, laser-based interferometry measurements of particle
velocities in the reaction zone of detonations in pure and commercial-grade liquid
nitromethane (Sheffield et al. 2002), and in the solid explosives PBX9501 (Gustavsen,
Sheffield & Alcon 2000) and PBX9502 (Seitz et al. 1989), appear to indicate that the
idealized one-dimensional planar structure is stable. For PBX9502, this conclusion
is reinforced by velocity against curvature measurements of detonations propagating
in cylindrical sticks (Hill, Bdzil & Aslam 2000). However, the rapid time resolution
(�1 ns) required to experimentally resolve the very fine structure of the detonation
front in liquid and solid explosives is currently unavailable. Consequently it seems
likely at this point in time that advances in our understanding of detonation structure
and stability in condensed-phase systems can be made only from mathematical and
numerical modelling.

To this end, Short et al. (2005) have examined the stability of planar detonations
within the context of the idealized condensed-phase model. This reactive-Euler model
consists of a constant-γ ideal-gas caloric equation of state having γ = 3, and assumes
a one-step reaction with an algebraic pressure-dependent rate (with a sensitivity
measured by an exponent n) and a non-integer reaction order (ν). In the strong
shock limit, and with ν = 1/2, the planar CJ detonation is unstable to disturbances
within a finite band of wavenumbers for n> 2.16, a value which is characteristic
of those used to mimic explosives like nitromethane (NM) and PBX9501/2 within
the context of the idealized condensed-phase detonation model. Thus the use of
this model tends to conflict with the experimental observations that detonations in
condensed-phase systems are stable. One of the drawbacks of this model is the use of
the ideal-gas caloric equation of state, which, for the typical ratios of detonation-shock
pressure to ambient pressure found in condensed-phase systems, results in extremely
large detonation Mach number values, since the sound speed in the initial state is
proportional to the initial pressure. In practice, for most condensed-phase explosives
the characteristic detonation Mach numbers are in the range 2–4. It seems natural,
therefore, that we should examine the effect on the location of the neutral stability
boundaries found in Short et al. (2005) for more realistic equations of state, where the
ambient material sound speed can be specified from experiments at a given pressure.

In the following, the classical detonation linear stability problem is reformulated
for a caloric (incomplete) equation of state in which the internal energy is specified
as an arbitrary function of pressure, specific volume and reaction progress variable.
We assume a one-step reaction as in Short et al. (2005), but now with an arbitrary
reaction rate law. The extension to multiple reaction steps is trivial, but omitted
here for reasons of clarity of the analysis. We then describe the extension of the
idealized condensed-phase detonation model to a ‘stiffened-gas’ equation of state
(Harlow & Amsden 1971; Menikoff & Plohr 1989; Davis 1997), under which the
stability of detonations with finite Mach numbers and large ratios of the post- to
pre-shock pressures, found in explosives such as NM and PBX9501/2, can be better
modelled. Subsequently, we describe the transition in the location of the one- and
two-dimensional neutral stabilities that occurs as the detonation Mach number is
systematically decreased from infinite values (Short et al. 2005) to finite values, within
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the stiffened-gas equation of state model. The linear stability of a detonation for a non-
ideal equation of state based on that described in Wescott, Stewart & Davis (2004)
has also been examined by Kasimov et al. (2003) and Kasimov (2004), including
one-step pseudo-reaction models for NM and PBX9502 similar to those used in
the current paper, and where, for CJ detonations, the linear spectra are derived in
the limit where the detonation overdrive approaches unity, rather than specifically
for the CJ case. The current formulation, particularly that of the normal mode
eigenfunction boundedness condition required to calculate the linear stability spectra,
is for unspecified functional forms for the equation of state and the reaction rate law,
and applies specifically at the CJ detonation speed.

A second question is also addressed in the current paper. It is apparent that
detonations in liquid nitromethane and PBX9502 are characterized by reaction zones
with dual length scales. These multi-length-scale detonations probably occur due to a
change in reaction mechanisms within the reaction zone, where one set of explosive
components is consumed rapidly behind the detonation shock, and then a second
set of components is consumed over a longer time scale (Sheffield et al. 2002). For
example, detonation particle velocity histories in nitromethane (Sheffield et al. 2002)
indicate that 70–75 % of the reaction occurs within 10 ns of the passage of the shock,
while the latter 25–30 % of the reaction occurs over a time scale of around 50 ns.
Similarly in PBX9502 (Seitz et al. 1989), 85 % of the reaction occurs within 25 ns of
the passage of the detonation shock, while the latter 15 % occurs over 300 ns. Particle
velocity histories in PBX9501 (Gustavsen et al. 2000) indicate a single-length-scale
reaction zone. We address how the presence of a slow reaction stage, characteristic
of detonations in NM and PBX9502, affects the location of the detonation stability
boundaries.

2. Model
2.1. Equations

The non-dimensional equations of motion coupled with an equation for species
conservation for the single-step reaction F(fuel) → P(product) are given by

DΛ

Dt
− Λ(∇l · ul) = 0,

Dul

Dt
= −Λ∇lp,

De

Dt
= −pΛ(∇l · ul),

Dβ

Dt
= r, (2.1a, b, c, d)

for specific volume Λ, pressure p, specific internal energy e, laboratory-frame velocity
ul = (ul, vl) and reaction progress variable β, where β = 1 represents unreacted fuel,
and β = 0 is fully depleted fuel. At this stage we adopt the general incomplete equation
of state and reaction rate forms,

e = e(p, Λ, β), r = r(p, Λ, β). (2.2a, b)

The (chemically) frozen sound speed c is related to (2.2a) via

c2 = Λ2(p + e,Λ)/e,p. (2.3)

Equations (2.1)–(2.3) have been non-dimensionalized such that Λ = Λ̃/Λ̃0, ul = ũl/D̃,

p = Λ̃0p̃/D̃2, xl = x̃l /̃l, t = D̃t̃ /̃l, e = ẽ/D̃2, c2 = c̃2/D̃2, where Λ̃0 is the upstream

(ambient) specific volume and D̃ is the dimensional (CJ) planar steady detonation
velocity. The length scale l̃ is set below.
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3. Travelling wave solutions
For thermodynamically consistent forms of (2.2a), the above model supports a one-

dimensional steady travelling wave solution consisting of a lead shock followed by a
region of chemical reaction (the ZND structure). Issues of thermodynamic consistency
for arbitrary equations equations of state relevant to compressible inviscid flows have
been extensively discussed by Menikoff & Plohr (1989). In a reference frame attached
to the wave, x = xl − t, where x =0 is set by the location of the shock front,
the thermodynamic and mechanical states in the steady wave for a general caloric
equation of state are connected by the conditions

Λ = −u, p = u + 1 + p0, e + pΛ + u2/2 = e0 + p0 + 1/2, (3.1a, b, c)

where p0 = Λ̃0p̃0/D̃
2 (p̃0 is the dimensional unshocked material pressure), e0 = ẽ0/D̃

2

is the ambient internal energy, and u = ul − 1. Relations (3.1a, b) define the Rayleigh
line variation, which holds regardless of the form of (2.2a), while (3.1c) defines
the Hugoniot curves for any degree of reaction, which do depend on the form of
(2.2a). The spatial structure of the ZND wave can be determined through the Master
equation relation,

u,x = −ue,β

ηe,p

r, η = u2 − c2, (3.2)

which depends on the form of both e and r. This equation is obtained by substituting
(2.2a) in the shock-attached steady version of (2.1c), and using (2.3) and (3.1a, b, c)
to eliminate p and Λ. Here, η is a sonic parameter. The structure of the CJ wave, the
slowest of all possible steady wave solutions, is defined by the appearance of a sonic
point relative to the detonation wave speed at a point of either incomplete or complete
reaction. For general forms of (2.2a, b) this may be determined as follows (Davis
1997). If D̃CJ , p̃0 and ẽ0 are known initially, where D̃CJ is the CJ speed, (3.1a, b, c)
can be solved to determine the immediate post-shock state at which no reaction has
occurred. Subsequently, (3.2) can be integrated from the shock (x = 0) into the region
x < 0. A single value of the heat of reaction q̃ will define a solution trajectory which
passes through the critical point (where η and r vanish simultaneously), and it is
this trajectory which defines the spatial structure of the CJ wave. Note that if the
sonic point appears at the end of the reaction zone, then (3.1a, b, c) can be used to
determine q̃ algebraically, otherwise q̃ must be determined iteratively by successive
integrations of (3.2). If q̃, p̃0 and ẽ0 are known initially, a similar procedure can be

used to determine D̃CJ .

4. Linear analysis
4.1. Perturbation equations

The equations governing small (linear) perturbations to the steady travelling wave
identified in § 3 are constructed as follows. We transform to a new spatial coordinate
system x = xl − t − Ψ (y, t), yl = y, where xl = t + Ψ (yl, t) is the shock locus in the
laboratory frame, which now becomes x =0. We seek a normal mode decomposition,

Ψ =Ψ0 exp(αt + iky), z = z∗ + Ψ0z′(x) exp(αt + iky), (4.1)

for the growth rate/frequency eigenvalue α and wavenumber k, where
z = (Λ, u, v, p, β)T represents the vector of dependent variables, the superscript∗

refers to the underlying steady wave solution, the primed quantities indicate the
spatially (x) dependent eigenfunctions and Ψ0 � 1. The system of equations that
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governs the linear stability of a detonation with the general equation of state and
reaction rate law (2.2a, b) is then determined to be

η∗u∗z′
,x + A∗z′ + a∗ = 0, (4.2)

where the matrix A∗ is defined in terms of steady-state quantities as

A∗ =




αη + u,x(c
2 − 2u2) − u2aΛ −αu2 + u,x(c

2 − 3u2)
u2(u,x + aΛ) αu2 + 2u2u,x

0 0
c2u,x + u2aΛ αc2 + u,x(c

2 + u2)
−ηr,Λ ηβ,x

iku3 −u2(α + ap) −u2aβ

−iuc2k u2(α + ap) u2aβ

αη −ikuη 0
−iuc2k u2(α + ap) u2aβ

0 −ηr,p η(α − r,β)




∗

, (4.3)

where

ap = (uu,x(e,pp − 1 − e,Λp) + e,βr,p + e,βpr)/e,p,

aΛ = (uu,x(e,pΛ + c2e,p/u3 − e,ΛΛ) + e,βr,Λ + e,βΛr)/e,p,

aβ = (uu,x(e,pβ − e,Λβ) + e,βr,β + re,ββ)/e,p.


 (4.4)

The vector a∗ is

a∗ = [αu,x(3u2 − c2), −2αu2u,x, ikηuu,x, −αu,x(c
2 + u2), −αηβ,x]

*T. (4.5)

4.2. Shock relations

The general conservation relations across the detonation shock surface F (xl , t) = 0,

are

[β] = [m] = 0, [mul + pnl] = 0,
[
m

(
e + 1

2
ul · ul

)
+ p(ul · nl)

]
= 0, (4.6)

where m = ρ(ul − V l) · nl , for shock normal nl = ∇lF/|∇lF | and normal shock
velocity V l · nl = −F,t/|∇lF |. Conditions (4.6) may be linearized, and the perturbation
eigenfunctions z′ shown to satisfy the shock relations

u′ = auα, p′ = (au + 1 + u)α, v′ = −(1 + u)ik, Λ′ = (−au + 1 + u)α, β ′ = 0, (4.7)

where

au =(1 + u)(e,p + e,Λ + p0)/(p + e,Λ − e,p) (4.8)

and we have dropped the steady-state index notation ∗. These conditions are valid
for the general equation of state (2.2a) and are applied at x = 0.

4.3. Compatibility condition

Steady travelling CJ waves contain a bounding forward-facing sonic characteristic
where η = 0. In principle an asymptotic analysis of (4.2) can be used to obtain the
spatial structure of the five independent homogeneous modes and the particular
solution of z′ as η ↑ 0. The presence of the sonic point η = 0 in the steady CJ wave
will generally result in one of the homogeneous modes being spatially unbounded as
η ↑ 0, whether the point η = 0 occurs at finite spatial locations or as x → ∞ (Short
et al. 2005). Provided that the functional form of the reaction rate (2.2b) does not
lead to any additional unbounded z′ modes as η ↑ 0, the closure condition which
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determines α corresponds to the eigenfunction solution for which the single spatially
unbounded mode in z′ is eliminated as η ↑ 0. This issue has been analysed extensively
in Short et al. (2005). Under these conditions, the boundedness closure condition can
also be derived as follows. Without approximation, any forward travelling plane wave
in the x-direction in the shock frame is described by

Lu+cp +
c

Λ
Lu+cu =Ψ,t

(
p,x +

c

Λ
u,x

)
− cv

Λ
Lyu − vLyp − c2

Λ
Lyv − E,βr,

E,p

(4.9)

where Lu+c = ∂t + (u + c)∂x and Ly = ∂y − Ψ,y∂x. When (4.9) is linearized about the
steady wave in normal mode form (4.1), the operator Lu+c will generate the differential
terms (u+c)[p, u]′

,x , which as η ↑ 0, and under the conditions described above, will be
the source of the single unbounded solution (no sources of singular behaviour will be
present in the backward or particle characteristic directions). For bounded solutions
we thus require (u+ c)[p, u]′

,x = 0 when η = 0, whereupon we derive the compatibility
(boundedness) condition

p′ + u′ − ikα−1uv′ + 2u,xα
−1(u′ − α) + bpp′ + bλΛ

′ + bββ
′ =0 (4.10)

where

bp = (−uu,x(1 − e,pp + e,Λp)/e,p + e,βr,p/e,p + e,βpr/e,p − e,ppe,βr/e
2
,p)/α,

bΛ = (−uu,x(e,ΛΛ − e,pΛ − 2e,pc2/u3)/e,p + e,βr,Λ/e,p + e,βΛr/e,p − e,pΛe,βr/e
2
,p)/α,

bβ = (−uu,x(e,Λβ − e,pβ)/e,p + e,βr,β/e,p + e,ββr/e,p − e,pβe,βr/e
2
,p)/α.




(4.11)

Equation (4.10) is applied at the point in the steady wave where η = 0. It again applies
for general forms of (2.2a, b), and also regardless of whether η = 0 occurs at a point
of incomplete reaction or at the point of complete reaction. Also, depending on the
form of (2.2a, b) not all the terms in (4.10) will be important at leading order as η ↑ 0.

Note that there are certain situations where (4.10) will not ensure bounded solutions,
and these are related to specific singular forms of reaction rate (Short et al. 2005)
that are not considered here.

5. Stiffened-gas equation of state and reaction rate law
As discussed above, one of the drawbacks of the idealized condensed-phase

detonation model (Short et al. 2005) is that when the detonation shock pressure
ps 	 p0, as occurs in condensed-phase explosives, the associated detonation Mach
number is large. In practice, while ps 	 p0, the detonation Mach numbers are typically
in the range 2–4 in condensed-phase explosives due to the large ambient sound speed
of the explosive. This limitation can be overcome by employing a more complex
choice of incomplete equation of state p = p(e, Λ) that will allow ps 	 p0 with finite
detonation Mach numbers. The simplest such system is the ‘stiffened-gas’ equation of
state (Harlow & Amsden 1971; Menikoff & Plohr 1989; Davis 1997),

e − e0 =
(p + a)Λ

Γ0

− (p0 + a)Λ0

Γ0

− λq, a = δ − (Γ0 + 1)p0, δ =
c̃2

0

D̃2
, p0 =

Λ̃0p̃0

D̃2

(5.1)

where δ−1/2 is the detonation Mach number with respect to the ambient sound speed,
p0 is the ratio of the ambient pressure p̃0 to D̃2/Λ̃0, and Γ0 is the Gruneisen gamma,
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ρ̃0 (g cm−3) c̃0 (km s−1) D̃CJ (km s−1) δ p0

NM 1.125 1.65 6.248 0.070 2.3 × 10−6

PBX9501 1.844 2.5 8.792 0.081 7.1 × 10−7

PBX9502 1.895 2.9 7.706 0.142 9.0 × 10−7

Table 1. Characteristic properties of the explosives liquid nitromethane (NM), PBX9501 (95%
HMX (cyclotetramethylenetetranitramine) and 5% binder by weight) and PBX9502 (95%
TATB (triaminonitrobenzene), 5% Kel-F 800 by weight). Here ρ̃0 and c̃0 are the ambient
material density and sound speed, while D̃CJ is the characteristic planar Chapman–Jouguet
detonation speed. All values are based on those given in Marsh (1980). The values of p0 are
calculated assuming p̃0 = 1 atm.

which is assumed to be constant. Also, λ is the product mass fraction variable and
q ( = q̃/D̃2) is the non-dimensional heat of reaction. The stiffened-gas equation of
state may be derived from a linearization of the incomplete equation of state near a
reference state (Menikoff & Plohr 1989). It reduces to the traditional form of the Tait
equation of state under conditions of isentropic flow (Menikoff & Plohr 1989). The
issue of identifying suitable thermodynamically consistent thermal equations of state
from an incomplete equation of state such as (5.1) has been discussed by Menikoff
& Plohr (1989) and Menikoff (2004). The value of a is in principle chosen to fit the
experimentally determined sound speed in the material at a given pressure, where
c2 = (1 + Γ0)Λ(p + a/(1 + Γ0)). The values of δ and p0 for the three condensed-
phase explosives NM and PBX9501/02 are listed in table 1 based on their material
properties given in Marsh (1980). It can be seen that the contribution to a from p0

is negligible, while the detonation Mach number δ−1/2 ranges from 3.78 in NM to
2.65 for PBX9502. For most materials of interest, the variation in a is in the range
0.05 to 0.2. The idealized condensed-phase detonation model (Short et al. 2005) can
be recovered by setting a = 0.

As in Short et al. (2005) we also assume a one-step reaction, although the
generalization to multiple reaction steps is trivial. Rather than working with the
product mass fraction variable λ, it proves convenient to transform to the reaction
progress variable β, which is typically chosen to facilitate the integration of the
linearized system (4.2) near the sonic point, based on the asymptotic structure of the
solution to (4.2) near this point (Short et al. 2005). For the present, we set

Dλ

Dt
= K̄(1 − λ)ν, β = (1 − λ)µ,

Dβ

Dt
= r = − µK̄β (ν+µ−1)/µ, (5.2)

where ν is the reaction order, β = 1 represents the shock state, and β = 0 represents
the product state. The rate constant K̄ = K̄(p, Λ, β) is chosen to mimic the ZND
detonation structure of NM and PBX9501/02 described in § 1 as determined by
laser-based interferometry measurements of particle velocities (Sheffield et al. 2002;
Gustavsen et al. 2000; Seitz et al. 1989). This is given by the ‘ignition & growth’
model-based form (Lee & Tarver 1980),

K̄ = K [pn1 (1 − ω) + krp
n2 (1 + ω)] /2, ω = erf(−(β − βc)/ε), (5.3)

where K is a constant, set by choosing l̃ so that x = −1 corresponds to λ= 1/2 in the
steady ZND wave. The parameter kr (<1) establishes the ratio of the rates of the slow
to fast reaction stages that occur in detonations in NM and PBX9502 (Sheffield et al.
2002; Seitz et al. 1989). The parameters n1 and n2 are the pressure sensitivities in the
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Figure 1. (a) One-dimensional neutral stability boundaries in the (n, a)-plane when kr = 1.
(b) Two-dimensional neutral stability boundaries in the (n, k)-plane (k < 2) for a = 0, a = 0.1
and a =0.2 when kr = 1. The circles mark the point of two-dimensional neutral stability in the
(n, k)-plane for each a.

fast and slow reaction stages respectively. For ε � 1, the parameter βc represents the
transition point from the fast to slow reaction stage. When kr = 1 and n1 = n2 the
reaction rate form is identical to that used in Short et al. (2005), and is characteristic
of the single-length-scale detonation structure found in PBX9501 (Gustavsen et al.
2000).

For the stiffened-gas equation of state (5.1) and for a one-step irreversible reaction
(5.2), the steady CJ detonation structure can be calculated exactly, and is given by

u = − (1 + Γ0)

(2 + Γ0)
(1 + p̄0) +

(1 − (1 + Γ0)p̄0)

2 + Γ0

β1/2µ, q =
(1 − (1 + Γ0)p̄0)

2

2Γ0(2 + Γ0)
, (5.4)

where p̄0 = p0 + a/(1 + Γ0).
We now present an analysis of the linear stability characteristics of a CJ detonation

for the stiffened-gas equation of state (5.1) and reaction rate law (5.2), highlighting
the differences with the results found in Short et al. (2005). Based on the values given
in table 1, in the following we have set p0 = 0, so a = δ, and restricted our range of
interest of a to 0 � a � 0.2. We have also set ν = µ = 1/2 and Γ0 = 2. For cases where
kr = 1, we use a single pressure exponent n= n1 = n2, so K̄ =Kpn. When kr 
= 1, we
set ε = 0.05.

6. Results
Figure 1(a) shows the variation in the neutral stability boundary that governs

one-dimensional (k = 0) stability as a varies for kr =1. For the strong shock limit
(a = 0), the neutral stability point occurs at n= 5.904. Increasing a has a three-fold
effect on the CJ wave structure: it reduces the effective heat release q, decreases the
shock pressure, while lowering the overall length of the CJ wave. Correspondingly, as a

increases, the value of the pressure exponent n at the point of one-dimensional neutral
stability increases rapidly. Thus for fixed n, the CJ wave becomes more stable to one-
dimensional disturbances as the detonation Mach number decreases. The neutral
stability point based on table 1 for NM (a = 0.07) occurs at n= 6.44, for PBX9501
(a = 0.081) at n= 6.53 and for PBX9502 (a = 0.142) at n= 7.08. Figure 1(b) shows
the neutral stability boundaries that govern stability to two-dimensional disturbances
for kr = 1, and three values of a, namely a = 0, a =0.1, and a = 0.2. Again, increasing
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Figure 2. (a) Two-dimensional neutral stability boundaries for k < 2 for a = 0.1 and
n= n1 = n2. Shown are the boundaries for kr = 1 and for kr =0.5 with βc = 0.274, 0.447
and 0.570. (b) Corresponding CJ wave profiles for n= 2.5.

a raises the value of the reaction rate pressure sensitivity exponent n required for
instability. Instability when a = 0 occurs for n> 2.168, when a = 0.1 for n> 2.552 and
when a = 0.2 for n> 2.953. Thus if one were to assume NM and PBX9501/02 all
have the rate form (5.3) with kr = 1 and identical rate pressure sensitivities, n1 = n2,

detonations in PBX9502 would be the most stable.
Figures 2 and 3 concern the effect on stability of a dual-length-scale detonation

reaction zone observed in NM and PBX9502, i.e. for kr 
= 1. Figure 2(a) shows the
two-dimensional neutral stability boundaries found when a =0.1 and n1 = n2 = n for
kr = 1 and for kr = 0.5 with three different transition points between the fast and slow
reaction stages. Figure 2(b) shows the corresponding CJ wave pressure profiles for
the cases considered in figure 2(a) when n = 2.5. Due to the second slower reaction
stage the length of the CJ wave for kr = 0.5 is greater than that for kr = 1, when
the slower reaction stage is absent. As the transition point βc moves closer to the
detonation shock, more of the heat is released in the slow reaction stage, while
the overall length of the CJ wave increases. The presence of a slow reaction stage
(kr<1) has a destabilizing effect on the detonation, decreasing the value of n at which
instability occurs compared with that when kr = 1. However, there is a non-monotonic
behaviour in the value of n above which the CJ wave is unstable as βc increases. For
βc = 0.274, the rate pressure exponent above which instability occurs is n= 2.157,

for βc = 0.447, n = 2.069, and for βc = 0.570, n = 2.192. Thus there appears to be a
critical value of the ratio of the heat released in the fast reaction stage to that in the
slow reaction stage that renders the lowest value of n for instability. Note that there
is also a significant variation in the corresponding value of k at the instability onset
values of n for the various cases.

Figure 3(a) shows the two-dimensional neutral stability boundaries for a = 0.1,

βc = 0.447, when n2 = n1, kr =0.5 and kr =0.25, and when n2 = 0.8n1, n2 = 0.6n1 with
kr = 0.5. Figure 3(b) shows the corresponding CJ wave pressure profiles for the cases
considered in figure 3(a) when n=2.5. The effect of reducing kr, keeping the ratio
of the heat released in the fast and slow stages constant, is to lower the instability
onset value of n. Thus for n1 = n2, there is a band of instability for kr = 0.5 when
n> 2.069, and for kr = 0.25 when n> 1.978. This trend has been verified for other
values of kr . The final case examined concerns the effect of different rate pressure
sensitivities in the fast and slower reaction stages. Figure 3(a) also shows the neutral
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Figure 3. (a) Two-dimensional neutral stability boundaries for k < 1.5, for a = 0.1 and
βc = 0.447. Shown are boundaries for kr = 0.5 and n2 = n1, n2 = 0.8n1 and n2 = 0.6n1 and
for kr = 0.25 with n2 = n1. (b) Corresponding CJ wave profiles for n1 = 2.5.

stability boundaries for n2 = n1, n2 = 0.8n1, and n2 = 0.6n1 with kr =0.5. The decreased
sensitivity in the slower reaction stage with kr fixed diminishes the difference in the
rates of the fast and slower reaction stages, and consequently the value of n that
determines instability is greater for n2 <n1 than for n2 = n1. Again the effect is non-
monotonic, since for n2 = 0.8n1 instability occurs when n> 2.296, but for n2 = 0.6n1

it occurs when n> 2.237.

In summary, we have examined the linear stability of a detonation in a condensed-
phase material under the assumption of a stiffened-gas equation of state, where the
ambient pressure can be ignored relative to the detonation shock pressure when the
detonation Mach number is finite. We studied a single-step reaction, with a pressure-
sensitive rate that has a single (as occurs in PBX9501) or dual (as occurs in NM or
PBX9502) time scale. When the rate pressure sensitivity exponents n1 = n2 = n, kr = 1,

the effect of a decreasing detonation Mach number is to increase the value of n at
which instability occurs. For n1 = n2 = n, kr < 1, the presence of a fast reaction stage
followed by a slow reaction stage in the CJ wave tends to decrease the value of n

at which instability occurs relative to the value of n for which instability occurs if
the second slower reaction were absent. Finally, for cases where n2 < n1, kr < 1, the
value of n1 for which instability occurs is higher that that when n2 = n1. In summary,
it appears that the detailed underlying CJ detonation wave structures in NM and
PBX9501/02 can have a major impact on their stability properties.

REFERENCES

Austin, J. M., Pintgen, F. & Shepherd, J. E. 2004 Reaction zones in highly unstable detonations.
Proc. Combust. Inst. 30, 1849–1857.

Davis, W. C. 1997 Shock waves; rarefraction waves; equations of state. In Explosive Effects and
Applications (ed. J. J. Zukas & W. P. Walters). Springer.

Fickett, W. & Davis, W. C. 1979 Detonation. University of California Press.

Engelke, R. & Bdzil, J. B. 1983 A study of the steady-state reaction-zone structure of a
homogeneous & a heterogeneous explosive. Phys. Fluids 26, 1210–1221.

Gamezo, V. N., Vasilev, A. A., Khokhlov, A. M. & Oran, E. S. 2000 Fine cellular structures
produced by marginal detonations. Proc. Combust. Inst. 28, 611–617.

Gustavsen, R. L., Sheffield, S. A. & Alcon, R. R. 2000 Progress in measuring detonation wave
profiles in PBX9501. In Proc. Eleventh Symp. (Intl) on Detonation Office of Naval Research
Rep. ONR 3330000-5, pp. 821–827.



Non-ideal Chapman–Jouguet detonation stability 309

Harlow, F. & Amsden, A. A. 1971 Fluid Dynamics. Mongraph LA-4700 (Los Alamos Scientific
laboratory, Los Alamos, NM).

Hill, L. G., Bdzil, J. B. & Aslam, T. D. 2002 Front curvature rate stick measurements and
detonation shock dynamics calibration for PBX9502 over a wide temperature range. In Proc.
Eleventh Symp. (Intl) on Detonation. Office of Naval Research Rep. ONR 33300-5, pp. 1029–
1037.

Kaneshige, M. & Shepherd, J. E. 1997 Detonation database. Tech. Rep. FM97-8, GALCIT, July
1997. See also http://www.galcit.caltech.edu/detn db/html/.

Kasimov, A. R. 2004 Theory of instability and nonlinear evolution of self-sustained detonation
waves. PhD Thesis, University of Illinois At Urbana-Champaign.

Kasimov, A. R. Wescott, B. L. Stewart, D. S. & Yoo, S. 2003 The structure and stability of
high-explosive detonation waves. Presented at the 19th Intl Colloquium on the Dynamics and
Explosions and Reactive Systems, Hakone, Japan.

Lee, E. L. & Tarver, C. M. 1980 Phenomenological model of shock initiation in heterogeneous
explosives. Phys. Fluids 23, 2362–2372.

Lee, J. H. S. 1984 Dynamic parameters of gaseous detonations. Annu. Rev. Fluid Mech. 16, 311–336.

Marsh, S. P. (Ed). 1980 LASL Shock Hugoniot Data. University of California Press, Berkeley.

Menikoff, R. 2004 Empirical equations of state for solids. Los Alamos National Rep. LA-UR-04-
7353.

Menikoff, R. & Plohr, B. J. 1989 The Riemann problem for fluid flow of real materials. Rev. Mod.
Phys. 61, 75–130.

Sharpe, G. J. 2001 Transverse waves in numerical simulations of cellular detonations. J. Fluid Mech.
447, 31–51.

Sheffield, S. A., Engelke, R., Alcon, R. R., Gustavsen, R. L., Robins, D. L., Stahl, D. B.,

Stacy, H. L. & Whitehead, M. C. 2002 Particle velocity measurements of the reaction zone
in nitromethane. In Proc. Twelfth Symp. (Intl) on Detonation. Office of Naval Research Rep.

Seitz, W. L., Stacy, H. L., Engelke, R., Tang, P. K. & Wackerle, J. 1989 Detonation reaction zone
structure of PBX9502. In Proc. Ninth Symp. (Intl) on Detonation.” Office of Naval Research
Rep. OCNR 113291-7, pp. 657–669.

Short, M., Anguelova, I. I., Aslam, T. D., Bdzil, J. B., Henrick, A. K. & Sharpe, G. J. 2005
Stability of idealized condensed phase detonations. J. Fluid Mech. (submitted).

Wescott, B. L., Stewart, D. S. & Davis, W. C. 2004 Calibration of a wide-ranging equation of state
and reaction rate for PBX-9502. Presented at the 30th Intl Symp. on Combustion, Chicago,
USA.




